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The SAMRAI framework supports a diverse set 
of  AMR research efforts

Two beam laser interaction
ALPS

Richtmeyer-Meshkov instability
Hybrid Continuum Particle

Richtmeyer-Meshkov instability
ALE-AMR

� AMR dynamically increases spatial and temporal grid resolution to 
resolve important local features 

� SAMRAI is an object-oriented C++ framework that supports applications 
investigating multi-scale phenomena.

� Framework provides high-level reusable code and algorithms shared 
across a variety of applications.



Fine local mesh

Intermediate local mesh

Coarse global mesh

Structured AMR (SAMR) employs a 
“patch” hierarchy

Patch
L0

Patches
L1

Patches
L2

� Hierarchy of nested “patch” levels ���� low 
overhead mesh description

� Data mapped to patches ���� simple model of 
data locality

� Patches cover logically rectangular index 
space

Berger, Oliger, Colella



SAMRAI manages many of the 
complexities of SAMR implementations

SAMRAI Provides:

� Parallel communication (MPI)

� Dynamic gridding support

� Inter-patch data transfer 
operations (copy, coarsen, 
refine, time int, …)

� Solver interfaces for SAMR 
data (PetSc, hypre, pvode)

� Checkpointing and restart 
(HDF5)

� Visualization support (VisIt)

User provides:

� (serial) numerical routines for individual patches

� Composition of SAMRAI classes to implement desired algorithm.



SAMRAI is an object-oriented “toolbox” of 
classes for SAMR application development

Mesh 
Management

Tool Box

Patch Hierarchy Data Transfer

Patch Data

Grid Geometry

Integration 
Algorithms

Linear/Nonlinear
Solvers

Application 
Utilities

Math Ops Multiblock

Hornung, Kohn, “Managing Application Complexity in the SAMRAI Object-oriented 
Framework”, Concurrency Computat.: Pract. Exper. 14:347-368 (2002)
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A SAMRAI "patch" contains all data on a 
box region of the computational mesh

Patch
Box Array<PatchData>

Patch Data
allocate(Box b)
copy(...)
packStream(...)
unpackStream(...)

All patch data 
objects

obey the same 
interface

NodeCell Face Outerface

Outernode IndexSet<TYPE> Particles Other user-
defined
types



Variable object
— defines a data quantity; type, 

(centering), (depth)
— attributes:

– name (string)
– unique instance id (int)

— Variable objects generally 
persist throughout 
computation

PatchData object
— represents data on a “box”
— attributes:

– box 
– ghost cell width

— Attributes facilitate construction 
of communication dependencies

— PatchData objects are created 
and destroyed as mesh changes

Solution algorithms and
variables tend to be static

Mesh and data objects
tend to be dynamic

SAMRAI Variable and PatchData delineate 
“static” and “dynamic” data concepts



Compare with...
� Variable

— defines a data quantity  
independent of mesh

— usually persists throughout 
computation

� PatchData
— represents data on a “box”
— created and destroyed as 

mesh changes

Solution algorithms and
variables tend to be static

Mesh and data objects
tend to be dynamic

Comm. Algorithm and Schedule: “static” 
and “dynamic” communication concepts

� Communication Algorithm
— describes data transfer 

phase of computation
— expressed using variables, 

operators, …
— independent of mesh
— typically persists throughout 

computation

� Communication Schedule
— manages details of data 

movement on mesh
— created by communication 

algorithm 
— depends on mesh
— re-created when mesh 

changes



� Amortize cost of creating send/receive sets over multiple 
communication cycles

� Data from various sources packed into single message stream
— supports complicated variable-length data
— one send per processor pair (low latency)

Communication schedules create and 
store data dependencies

Send Set Receive Set

message buffer

MPI sendCell Data (double)

Particles

packStream(...);



Continuum 
representation (Euler, 
Navier-Stokes) away 

from interface

fluid A fluid B

DSMC representation 
at interface

Adaptive Mesh and Algorithm Refinement 
(AMAR) refines mesh and numerical model

� AMR is used to refine continuum 
calculation and focus particles

� Algorithm switches to discrete 
atomistic method to include physics 
absent in continuum model

Wijesinghe, Hornung, Garcia, Hadjiconstantinou, ““Three-dimensional Hybrid Continuum-Atomistic 
Simulations for Multiscale Hydrodynamics”, J. Fluid. Eng., 126:768-777 (Sept 2004).

Particles resolve molecular-scale 
dynamics of mixing region



Pre-existing particle data structures 
coupled to SAMRAI via patch data interface

DsmcPatchData* particles = patch->getPatchData(. . .);

particles->advance(dt);

Patch

PatchData

DSMC
PatchData

Serial DSMC
data structures

and routines



ALE-AMR combines ALE integration with AMR

Moving-deforming AMR grid

3D ICF hydro
calculation

small-scale RM
instability

Anderson, Elliott, Pember, “An Arbitrary Lagrangian-Eulerian Methods with Adaptive Mesh 
Refinement for the Solution of the Euler Equations”, J. Comp. Phys. 199(2): 598-617 (2004).

� Advantages of ALE (multiple materials, moving interfaces) 
� Advantages of AMR (dynamic addition & removal of mesh points)



Deforming grids in ALE-AMR managed by 
specializing SAMRAI grid geometry

Manages “index 
space” coordinates

Manages “physical 
space” coordinates

GridGeometry

DeformingGrid
Geometry

PatchHierarchy

CartesianGrid
Geometry

Utilizes all the other 
features of SAMRAI:
• parallel communication
• adaptive gridding
• solver interfaces
• etc.  



SAMRAI “multiblock” capability supports 
multiple patch hierarchies

Five AMR patch hierarchies 
meet at single point

� Multiple index spaces 
stitched together
—translations & rotations
—transparent data 

communication between 
hierarchies



SAMRAI supports Cartesian Embedded 
Boundary grid representations  

� Constructing body-fitted logically 
rectangular grids is tedious and 
expensive.

� Embedded boundary grids 
constructed automatically in 
SAMRAI
— Built from polygons or from 

surface triangulation using 
CUBES Cut cells

Embedded Boundary Grid

Mesh 
refinement

Example 
embedded 
boundary mesh 
constructed with 
CUBES

M. Berger, Courant Inst./NASA Ames

Body-fitted grid

Gridlines 
follow 
building 
boundaries



� IndexVariable and IndexData classes manage data 
quantities on irregular index sets

SAMRAI index data supports embedded 
boundary as “patch data”

IndexVariable<TYPE> ivar(“name”)
IndexData<TYPE> idata(Box& box, ghosts)

“TYPE” 

Required methods
TYPE()  
TYPE& operator=(const TYPE&)
getDataStreamSize(Box&)
packStream(...) 
unpackStream(...)

CutCell type describes internal boundary and 
state information along boundary

e.g.



“Shapefile” (Manhattan)

AUDIM applying adaptive meshing for 
CFD Urban Dispersion Modeling 

SAMRAI
Adaptive Meshing, embedded 

boundary representation, 
parallel AMR support

SAMRAI
Adaptive Meshing, embedded 

boundary representation, 
parallel AMR support

Triangulated surf grid

polygons

FEM3MP
FE based CFD 

Dispersion model

FEM3MP
FE based CFD 

Dispersion model

Eleven (Overture)
Polygonal Geometry 

Representation

Eleven (Overture)
Polygonal Geometry 

Representation

AMR Emb Boundary Vol MeshAdaptive CFD simulation

CUBES
(Berger)

CUBES
(Berger)



Immersed boundary methods model fluid 
structure interactions

Griffith, Peskin (NYU) are developing an 
electrical-mechanical heart model 

combining immersed boundaries and 
AMR (SAMRAI)

Fluid domain: 
u(x,t),p(x,t),f(x,t)

Structure domain: 
X(s,t), F(s,t)



Communication specialized for
finite-element based operations

SumTransactionCopyTransaction

Transaction
void packstream()
void unpackstream()

Ghost Cell Copy

Typically used for Finite 
Difference and Finite 
Volume discretizations

Node sum

“+=“

Used for element 
assembly in Finite 

Element discretization

Transaction::packStream()

Transaction::unpackStream()

dst
patchdata

MPI Buffer

src
patchdata

operator

� “Sum” transactions used for 
finite element calculations
— Used across multiple levels 

for AMR

— Node & Edge sum available



Scaled Linear Advection
Linux MCR Cluster
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Wissink, Hysom, Hornung, “Enhancing Scalability of Parallel Structured AMR Calculations”, 
2003 Int. Conf. on Supercomputing (ICS03), San Francisco, CA, June 2003, pp. 336-347. 
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SAMRAI supports applications on large 
parallel platforms



Concluding remarks

� AMR is an important technology for large-scale science & 
engineering problems that require greater resolution of localized 
features

� New applications require expansion of current AMR methodologies
— Model refinement in addition to grid refinement
— Support for variety of data representations and non-Cartesian grids
— Complex geometries
— Efficiency on large-scale parallel architectures

� AMR libraries must effectively interoperate with other software 
packages – solver libraries, grid generation packages, etc.


